@hpcc-js/dataflow

hpcc-js - Data Flow

Downloads in past

Stats

StarsIssuesVersionUpdatedCreatedSize
@hpcc-js/dataflow
72128.1.420 days ago2 years agoMinified + gzip package size for @hpcc-js/dataflow in KB

Readme

@hpcc-js/dataflow
A small functional library for processing "data flows" in JavaScript (more examples on ObservableHQ). Highlights:
  • Lazy Evaluation - Implemented using modern JavaScript generators and iterators
  • Memory Efficient - Data "streams" from one "activity" to the next
  • Functional - Pure functional implementation.
  • Fully Typed - Written in typescript and supports typed chaining of functional activities
  • UMD/ES6 Bundles - Works in NodeJS / Browser and includes ES6 modules to ensure you only include what you use (when bundling with RollupJS / Webpack etc.)

Motivation

The underlying motivation for this library is to simplify the processing of data in an efficient way. The analogy we use is one of a "data" pipe, which consists of:
  • Activities: Functional components that modify data as it flows through the pipe.
  • Sensors: Functional components that observe the data as it passes through the pipe.

Some other properties of pipes are:
  • Can be defined, before being used.
  • A complex pipe is just another "Activity" and as such can be re-used inside other pipes.
  • Encourages the user to only iterate through the source data ONCE allowing for less memory use and better overall performance.

Terminology

  • Activity - A functional unit of work that is primary used to alter the data (map, filter, sort, ...).
  • Sensor - A function which "observes" the data without modifying it (min, max, quartile, ...).
  • IterableActivity - An "Activity" which produces an "Iterable" output (map, filter, sort, ...).
  • ScalarActivity - An "Activity" which produces a single value (min, max, reduce...).
  • Process or Pipeline - A series of "Activities" chained together, so that "data" "flows" through the process / pipeline.

Quick Example

Simple example of data flowing through a pipe of activities: filter->map->filter->first
import { count, filter, first, generate, map, max, pipe, sensor } from "@hpcc-js/dataflow";

const c1 = count();
const c2 = count();
const c3 = count();
const m1 = max(row => row.value);

const p1 = pipe(
    sensor(c1),                         //  Keep running count of input
    filter(n => n <= 0.5),              //  Filter out numbers > 0.5  
    sensor(c2),                         //  Keep running count of filtered rows
    map((n, idx) =>                     //  Convert to JSON Object 
        ({ index: idx, value: n })),
    filter(row => row.index % 2 === 0), //  Filter even row indecies 
    sensor(c3),                         //  Keep running count of final rows
    sensor(m1),                         //  Track largest value
    first(3)                            //  Take first 3 rows
);

console.log(`Counts: ${c1.peek()}, ${c2.peek()}, ${c3.peek()}`);
    // [1] => Counts: undefined, undefined, undefined

const outIterable = p1(generate(Math.random, 1000));
console.log(`Counts: ${c1.peek()}, ${c2.peek()}, ${c3.peek()}`);
    // [2] => Counts: undefined, undefined, undefined

console.log(JSON.stringify([...outIterable]));
    // [3] => [{"index":0,"value":0.19075931906641008},{"index":2,"value":0.4873469062925415},{"index":4,"value":0.4412516774100035}]

console.log(`Counts: ${c1.peek()}, ${c2.peek()}, ${c3.peek()}, ${m1.peek()}`);
    // [4] => Counts: 6, 5, 3, 0.4873469062925415


const outArray = [...p1([0.7, 0.5, 0.4, 0.8, 0.3, 1])];
console.log(JSON.stringify(outArray));
    // [5] => [{"index":0,"value":0.5},{"index":2,"value":0.3}]

console.log(`Counts: ${c1.peek()}, ${c2.peek()}, ${c3.peek()}, ${m1.peek()}`);
    // [6] => Counts:  6, 3, 2, 0.5

Notes:
  1. All sensors are undefined as expected
  2. All sensors are still undefined as p1(generate(Math.random, 1000)) only returns an IterableIterator. IOW no data has flown through the pipe yet.
  3. [...outIterable] Is a shorthand way to populate an array with data from an iterable.
  4. The sensors now have values we can peek at!
  5. The pipe p1 can be reused with new data, this time the input is a simple array
  6. The same sensors will reflect the correct state from the second run

Further the sensors can be observed at any point during the process.
for (const row of p1(generate(Math.random, 1000000))) {
    console.log(`${row.index}: ${c1.peek()}, ${c2.peek()}, ${c3.peek()}, ${m1.peek()}`);
}
// => 0: 1, 1, 1, 0.13662528848681
// => 2: 3, 3, 2, 0.13662528848681
// => 4: 7, 5, 3, 0.4328468228869129

Note: Even though there is 1000000 rows of data being potentially generated, only 7 are actually read for this run.

API Reference

Activities

Functions which alter data inside the dataflow pipe
# concat(iterable, iterable): iterable
# concat(iterable): (iterable) => iterable

Concatenates two iterables into a single iterable. Similar to Array.concat.
concat(["a", "b", "c"], ["d", "e", "f"]);  // => "a", "b", "c", "d", "e", "f"

const concatDEF = concat(["d", "e", "f"]);
concatDEF(["a", "b", "c"]);  // => "a", "b", "c", "d", "e", "f"
concatDEF(["1", "2", "3"]);  // => "1", "2", "3", "d", "e", "f"
source tests
# each(iterable, callbackFn): iterable
# each(callbackFn): (iterable) => iterable

Perform callback for each row in an iterable. Cannot alter the iterable value. Similar to Array.forEach
. Useful for debugging steps in a pipe.
each(["a", "b", "c"], (row, idx) => console.log(row));  // => "a", "b", "c"

const logFlow = each(console.log);
logFlow(["a", "b", "c"]);  // => "a", "b", "c"

source tests
# entries(iterable): iterable
# entries(): (iterable) => iterable

Perform callback for entries row in an iterable. Cannot alter the iterable value. Similar to Array.entries.
entries(["a", "b", "c"]);  // => [0, "a"], [1, "b"], [2, "c"]

const calcEntries = entries();
calcEntries(["a", "b", "c"]);  // => [0, "a"], [1, "b"], [2, "c"]
source tests
# filter(iterable, condition): iterable
# filter(condition): (iterable) => iterable

Filter iterable based on some condition. Similar to Array.filter.
const words = ["spray", "limit", "elite", "exuberant", "destruction", "present"];

filter(words, word => word.length > 6);  // => "exuberant", "destruction", "present"

const smallWords = filter(word => word.length <= 6);
smallWords(words);  // => "spray", "limit", "elite"

source tests
# first(iterable, number): iterable
# first(number): (iterable) => iterable

Limit the flow to the first N rows of data.
const words = ["spray", "limit", "elite", "exuberant", "destruction", "present"];

first(words, 3);  // => "spray", "limit", "elite"

const first2 = first(2);
first2(words);  // => "spray", "limit"

source tests
# group(iterable, condition): iterable
# group(condition): (iterable) => iterable

Groups data based on some grouping condition. Output is in the form {key: groupCondition, value:...}, where the key has to be either a number or a string.
const words = ["one", "two", "three", "four", "five", "six"];

group(words, word => word.length);  // => {key:  3, value: ["one", "two", "six"]}, {key:  4, value: ["four", "five"]}, { key: 5, value: ["three"]}

const groupByLength = group(word => word.length);
groupByLength(words);  // => {key:  3, value: ["one", "two", "six"]}, {key:  4, value: ["four", "five"]}, { key: 5, value: ["three"]}

source tests
# histogram(iterable, condition, options): iterable
# histogram(condition, options): (iterable) => iterable

Groups data into buckets (or bins) based on numeric ranges. Output is in the form {from: numeric, to: numeric, value:[...]}.
Available options are:
{ buckets: number }  // Specify number of buckets / bins
or
{ min: number, range: number }  // Specify starting bucket (min) and size of bucket (range)

const data = [1, 12, 13, 13, 3, 14, 19, 6];
histogram(data, n => n, { buckets: 3 });  // => {"from":1,"to":7,"value":[1,3,6]},{"from":7,"to":13,"value":[12]},{"from":13,"to":19,"value":[13,13,14,19]}

histogram(data, n => n, { min: 0, range: 5 });  // => {"from":0,"to":5,"value":[1,3]},{"from":5,"to":10,"value":[6]},{"from":10,"to":15,"value":[12,13,13,14]},{"from":15,"to":20,"value":[19]}

source tests
# map(iterable, callback): iterable
# map(callback): (iterable) => iterable

Map data to a new shape via a callback frunction. Similar to Array.map.
map([{ n: 22 }, { n: 11 }, { n: 33 }], (row, idx) => ({ ...row, index: idx })); // => { n: 22, index: 0 }, { n: 11, index: 1 }, { n: 33, index: 2 }

const indexData = map((row, idx) => ({ ...row, index: idx + 1 }));
indexData([{ n: 22 }, { n: 11 }, { n: 33 }]);  // => { n: 22, index: 1 }, { n: 11, index: 2 }, { n: 33, index: 3 }

source tests
# skip(iterable, number): iterable
# skip(number): (iterable) => iterable

Skip a set number of rows.
const words = ["spray", "limit", "elite", "exuberant", "destruction", "present"];

skip(words, 3);  // => "exuberant", "destruction", "present"

const skip4 = skip(4);
skip4(words);  // => "destruction", "present"

source tests
# sort(iterable, compare): iterable
# sort(compare): (iterable) => iterable

Sort iterable based on result of compare function (should return -1, 0, 1). Similar to Array.sort.
var numbers = [4, 2, 5, 1, 3];

sort(numbers, (a, b) => a - b);  // => 1, 2, 3, 4, 5

const reverseSort = sort((a, b) => b - a);
reverseSort(numbers)  // => 5, 4, 3, 2, 1

source tests

Sensors

A collection of "Observers" which can be adapted as functions, activities and sensors

Types / Interfaces

export interface Observer<T, U> {
    observe(r: T, idx: number): void;
    peek(): U;
}

Adapters

# sensor(: Observer): iterable

Adapts an observer so it can be used in a pipe.
# scalar(
: Observer): any

Adapts an observer so it can be called as a regular function.

Observers

# count(): Observer

Counts the number of "observed" rows:
const s1 = count();
const s2 = count();
const p1 = pipe(
    sensor(s1),
    filter(r => r.age > 30),
    sensor(s2),
);
const data = [...p1(population)];
s1.peek();  // => 1000;
s2.peek();  // => 699;

const doCount = scalar(count());
doCount([5, 1, 2, -3, 4]);  // => 5
source tests
# min(): Observer
# min(accessor): Observer

Calculates minimal value for "observed" rows:
const s1 = min();
const s2 = min();
const p1 = pipe(
    sensor(s1),
    filter(r => r > 3),
    sensor(s2),
);
const data = [...p1([1, 2, 3, 4, 5, 0])];
s1.peek()   // => 0
s2.peek()   // => 4

const calcMin = scalar(min(row => row.id));
calcMin([{ id: 22 }, { id: 44 }, { id: 33 }]); // => 22
source tests
# max(): Observer
# max(accessor): Observer

Calculates maximum value for "observed" rows:
const s1 = max();
const s2 = max();
const p1 = pipe(
    sensor(s1),
    filter(r => r < 3),
    sensor(s2),
);
const data = [...p1([1, 2, 3, 4, 5, 0])];
s1.peek()   // => 5
s2.peek()   // => 2

const calcMax = scalar(max(row => row.id));
calcMax([{ id: 22 }, { id: 44 }, { id: 33 }]); // => 44

source tests
# extent(): Observer
# extent(accessor): Observer

Calculates extent (min + max) values for "observed" rows:
const s1 = extent(r => r.age);
const s2 = extent(r => r.age);
const p1 = pipe(
    sensor(s1),
    filter(r => r.age > 30),
    sensor(s2),
);
const data = [...p1(population)];
s1.peek()   // => [16, 66]
s2.peek()   // => [31, 66]

const calcExtent = scalar(extent(row => row.id));
calcExtent([{ id: 22 }, { id: 44 }, { id: 33 }]); // => [22, 44]

source tests
# mean(): Observer
# mean(accessor): Observer

Calculates mean (average) value for "observed" rows:
const calcMean = scalar(mean());
calcMean([5, -6, 1, 2, -2]))    // => 0

source tests
# median(): Observer
# median(accessor): Observer

Calculates median value for "observed" rows:
const calcMedian = scalar(median());
calcMedian([-6, -2, 1, 2, 5])       // => 1
calcMedian([5, -6, 1, 2, -2])       // => 1
calcMedian([-6, -2, 1, 2, 5, 6])    // => 1.5
calcMedian([5, -6, 1, 2, -2, 6])    // => 1.5
calcMedian([9])                     // => 9

source tests
# quartile(): Observer
# quartile(accessor): Observer

Calculates quartile value for "observed" rows:
const calcQuartile = scalar(quartile());
calcQuartile([6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49])    // => [6, 15, 40, 43, 49]
calcQuartile([7, 15, 36, 39, 40, 41])                       // => [7, 15, 37.5, 40, 41]
calcQuartile([1, 22, 133])                                  // => [1, 1, 22, 133, 133]
calcQuartile([2, 144, 33])                                  // => [2, 2, 33, 144, 144]

source tests
# reduce(reducer, initialValue): Observer

Calculates reduced value for "observed" rows:
const reduceFunc = (prev, row) => prev + row;
const calcReduce1 = scalar(reduce(reduceFunc));
const calcReduce2 = scalar(reduce(reduceFunc), 10);

calcReduce1([1, 2, 3, 4, 5])   // => 15
calcReduce2([1, 2, 3, 4, 5])   // => 25

source tests
# variance(): Observer
# variance(accessor): Observer

Calculates the variance for the "observed" rows. If the number of rows is fewer than two numbers, returns undefined.
const calcVariance = scalar(variance());
calcVariance([5, 1, 2, 3, 4])   // => 2.5

source tests
# deviation(): Observer
# deviation(accessor): Observer

Calculates the standard deviation for the "observed" rows. If the number of rows is fewer than two numbers, returns undefined.
const calcDeviation = scalar(deviation());
calcDeviation([5, 1, 2, 3, 4])   // => 1.58113883008 == sqrt(2.5)

source tests
# distribution(): Observer<number, { min: number, mean: number, max: number, deviation: number, variance: number}>
# distribution(accessor): Observer<any, { min: number, mean: number, max: number, deviation: number, variance: number}>

Calculates a "distribution" (a combination of min, max, mean, variance and deviance) of the "observed" rows. If the number of rows is fewer than two numbers, returns undefined.
const calcDistribution = scalar(distribution());
calcDistribution([5, 1, 2, 3, 4]))  // => { min: 1, mean: 3, max: 5, deviation: Math.sqrt(2.5), variance: 2.5}

source tests

Convenience

Convenience functions
# pipe(iterable, ...iterableActivity): iterable
# pipe(iterable, ...iterableActivity, scalarActivity): scalar
# pipe(...iterableActivity): iterableActivity
# pipe(...iterableActivity, scalarActivity): scalarActivity

Pipes a series of activities into a single process pipeline.
// Iterable output  
pipe([0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
    filter(n => n <= 5),
    map((n, idx) => ({ index: idx, value: n })),
    filter(row => row.index % 2 === 0),
    sort((l, r) => l.value - r.value),
    first(3)
);  // => { index: 0, value: 0 }, { index: 2, value: 2 }, { index: 4, value: 4 }

const process = pipe(
    filter(n => n <= 5),
    map((n, idx) => ({ index: idx, value: n })),
    filter(row => row.index % 2 === 0),
    sort((l, r) => l.value - r.value),
    first(3)
);  
process([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])// => { index: 0, value: 0 }, { index: 2, value: 2 }, { index: 4, value: 4 }

// Scalar output  
pipe([0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
    process,
    max(row => row.value)
);  // => 4

const process_2 = pipe(
    process,
    min(row => row.value)
); 
process_2([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);  // => 0

source tests
# generate(generatorFn, maxIterations): iterable

Generates an iterable data set. Optionally limits the length to maxIterations.
// Iterable output  
generate(Math.random);  // => Random number iterator
generate(Math.random, 100);  // => Random number iterator limited to 100 items

source tests